public abstract class MLROIConfFinder extends java.lang.Object implements MLROIFinder, ROIProbability
| Modifier and Type | Field and Description |
|---|---|
protected double |
confThr
A confidence threshold between 0 and 1 to be met for labelling a sample as containing ROI.
|
| Constructor and Description |
|---|
MLROIConfFinder() |
| Modifier and Type | Method and Description |
|---|---|
double |
getConfidenceThreshold()
Returns the confidence threshold for labelling ROI.
|
double |
predict(Dataset data)
Predicts the label for a sample.
|
double |
predict(double[] data)
Predicts the label for a sample.
|
void |
setConfidenceThreshold(double confThr)
Sets the confidence threshold for labelling ROI samples - the model must be (confThr * 100)% confident a
sample contains ROI for it to be labelled as such.
|
static byte[] |
writableWriteToBytes(org.apache.hadoop.io.Writable writable)
Convenience method for writing a Mahout Writable to a byte array
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitnegativeClass, positiveClass, traingetObjectMap, getSerializationVersion, getVersion, init, initCurrentVersion, initPreviousVersion, initUnknownVersion, load, read, save, writeclassify, predict_proba, predict_probaprotected double confThr
public double getConfidenceThreshold()
public void setConfidenceThreshold(double confThr)
throws java.lang.IllegalArgumentException
confThr - new confidence thresholdjava.lang.IllegalArgumentException - if the confidence threshold is not in the range 0-1 inclusive.public double predict(double[] data)
predict in interface MLROIFinderdata - sample to predictpublic double predict(Dataset data)
predict in interface MLROIFinderdata - sample to predictpublic static byte[] writableWriteToBytes(org.apache.hadoop.io.Writable writable)
writable - Mahout object that implements the Writable interface