public abstract class MLROIConfFinder extends java.lang.Object implements MLROIFinder, ROIProbability
Modifier and Type | Field and Description |
---|---|
protected double |
confThr
A confidence threshold between 0 and 1 to be met for labelling a sample as containing ROI.
|
Constructor and Description |
---|
MLROIConfFinder() |
Modifier and Type | Method and Description |
---|---|
double |
getConfidenceThreshold()
Returns the confidence threshold for labelling ROI.
|
double |
predict(Dataset data)
Predicts the label for a sample.
|
double |
predict(double[] data)
Predicts the label for a sample.
|
void |
setConfidenceThreshold(double confThr)
Sets the confidence threshold for labelling ROI samples - the model must be (confThr * 100)% confident a
sample contains ROI for it to be labelled as such.
|
static byte[] |
writableWriteToBytes(org.apache.hadoop.io.Writable writable)
Convenience method for writing a Mahout Writable to a byte array
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
negativeClass, positiveClass, train
getObjectMap, getSerializationVersion, getVersion, init, initCurrentVersion, initPreviousVersion, initUnknownVersion, load, read, save, write
classify, predict_proba, predict_proba
protected double confThr
public double getConfidenceThreshold()
public void setConfidenceThreshold(double confThr) throws java.lang.IllegalArgumentException
confThr
- new confidence thresholdjava.lang.IllegalArgumentException
- if the confidence threshold is not in the range 0-1 inclusive.public double predict(double[] data)
predict
in interface MLROIFinder
data
- sample to predictpublic double predict(Dataset data)
predict
in interface MLROIFinder
data
- sample to predictpublic static byte[] writableWriteToBytes(org.apache.hadoop.io.Writable writable)
writable
- Mahout object that implements the Writable interface